The ultimate aim of image restoration like denoising is to find an exact correlation between the noisy and clear image domains. But the optimization of end-to-end denoising learning like pixel-wise losses is performed in a sample-to-sample manner, which ignores the intrinsic correlation of images, especially semantics. In this paper, we introduce the Deep Semantic Statistics Matching (D2SM) Denoising Network. It exploits semantic features of pretrained classification networks, then it implicitly matches the probabilistic distribution of clear images at the semantic feature space. By learning to preserve the semantic distribution of denoised images, we empirically find our method significantly improves the denoising capabilities of networks, and the denoised results can be better understood by high-level vision tasks. Comprehensive experiments conducted on the noisy Cityscapes dataset demonstrate the superiority of our method on both the denoising performance and semantic segmentation accuracy. Moreover, the performance improvement observed on our extended tasks including super-resolution and dehazing experiments shows its potentiality as a new general plug-and-play component.
翻译:图像恢复的终极目标是在噪音和清晰图像域间找到确切的关联性。 但是,端到端清除的学习(如像素-错失)的优化是以样到样的方式进行的,这忽略了图像的内在关联性,特别是语义学。 在本文中,我们引入了深语义统计匹配(D2SM) Denoising 网络。 它利用了预先训练的分类网络的语义特征, 然后隐含地匹配了语义特征空间清晰图像的概率分布。 通过学习保存解析图像的语义分布, 我们从经验上发现我们的方法极大地提高了网络的解析能力, 并且解析的结果可以被高层次的视觉任务更好理解。 对杂乱的城景数据集进行的全面实验显示了我们方法在解析性性表现和语义分化准确性两方面的优越性。 此外,在我们的扩展任务上观察到的性能改进性能, 包括超分辨率和解析实验, 显示了它作为新的普通插曲组成部分的潜力。