3D shape matching is a long-standing problem in computer vision and computer graphics. While deep neural networks were shown to lead to state-of-the-art results in shape matching, existing learning-based approaches are limited in the context of multi-shape matching: (i) either they focus on matching pairs of shapes only and thus suffer from cycle-inconsistent multi-matchings, or (ii) they require an explicit template shape to address the matching of a collection of shapes. In this paper, we present a novel approach for deep multi-shape matching that ensures cycle-consistent multi-matchings while not depending on an explicit template shape. To this end, we utilise a shape-to-universe multi-matching representation that we combine with powerful functional map regularisation, so that our multi-shape matching neural network can be trained in a fully unsupervised manner. While the functional map regularisation is only considered during training time, functional maps are not computed for predicting correspondences, thereby allowing for fast inference. We demonstrate that our method achieves state-of-the-art results on several challenging benchmark datasets, and, most remarkably, that our unsupervised method even outperforms recent supervised methods.
翻译:3D 形状匹配是计算机视觉和计算机图形中长期存在的一个问题。 虽然深神经网络显示会在形状匹配中导致最先进的艺术效果, 但现有的基于学习的方法在多形状匹配中是有限的:(一) 它们要么只关注相匹配的形状配对,因此受到循环不兼容的多匹配的影响, 要么(二) 它们需要一个清晰的模板形状来匹配各种形状的集合。 在本文中, 我们为深多形状匹配提供了一个新颖的方法, 以确保周期一致的多匹配, 而不取决于明确的模板形状。 为此, 我们使用一个形状对单向多匹配的表示方式, 将我们与强大的功能映射正规化结合起来, 这样我们多形状配对的神经网络就可以完全不受监督地接受培训。 虽然功能地图的正规化只是在培训期间才被考虑, 但功能地图并不是用来预测对应的, 从而可以快速推断。 我们展示了我们的方法在最有挑战性的最新数据定型方法上, 甚至实现了最强的超强的模型。