A motion-based control interface promises flexible robot operations in dangerous environments by combining user intuitions with the robot's motor capabilities. However, designing a motion interface for non-humanoid robots, such as quadrupeds or hexapods, is not straightforward because different dynamics and control strategies govern their movements. We propose a novel motion control system that allows a human user to operate various motor tasks seamlessly on a quadrupedal robot. We first retarget the captured human motion into the corresponding robot motion with proper semantics using supervised learning and post-processing techniques. Then we apply the motion imitation learning with curriculum learning to develop a control policy that can track the given retargeted reference. We further improve the performance of both motion retargeting and motion imitation by training a set of experts. As we demonstrate, a user can execute various motor tasks using our system, including standing, sitting, tilting, manipulating, walking, and turning, on simulated and real quadrupeds. We also conduct a set of studies to analyze the performance gain induced by each component.
翻译:基于运动的控制界面将用户的直觉与机器人的马达能力结合起来,从而在危险的环境中进行灵活的机器人操作。 但是,为非人类机器人设计一个运动界面,例如四倍或六倍的机器人设计一个运动界面并不简单,因为不同的动态和控制策略决定了这些机器人的移动。 我们提出一个新的运动控制系统,允许人类用户在一个四倍的机器人上无缝地操作各种运动任务。 我们首先利用受监督的学习和后处理技术,用适当的语义将所捕获的人类运动重新定位为相应的机器人运动。 然后,我们用课程学习来进行运动模拟学习,以制定控制政策,跟踪给定的再定向参考。 我们通过培训一组专家来进一步改进运动再定向和运动仿制两种动作的性能。 正如我们所证明的那样,用户可以利用我们的系统执行各种运动任务,包括站立、坐、倾斜、操纵、行走和以模拟和真实的四倍翻转。 我们还进行一系列研究,以分析每个组件的性能增。