We consider the following matching-based routing problem. Initially, each vertex $v$ of a connected graph $G$ is occupied by a pebble which has a unique destination $\pi(v)$. In each round the pebbles across the edges of a selected matching in $G$ are swapped, and the goal is to route each pebble to its destination vertex in as few rounds as possible. We show that if $G$ is a sufficiently strong $d$-regular spectral expander then any permutation $\pi$ can be achieved in $O(\log n)$ rounds. This is optimal for constant $d$ and resolves a problem of Alon, Chung, and Graham [SIAM J. Discrete Math., 7 (1994), pp. 516--530].
翻译:我们考虑了以下基于匹配的路线问题。 最初, 连接的图形$G 的每个顶点 $v 美元 被一个有独特目的地$\pi(v)美元的圆柱子占用。 在选定的匹配的边缘的每圆柱子中, 以$G 美元交换, 目标是在尽可能短的几轮内将每个盖子引向其目的地的顶点。 我们显示, 如果$G 是一个足够强的美元普通光谱扩展器, 那么任何调值$( log n) 美元都可以在 $O( log n) 的回合中实现。 这对恒定 $ 和 Graham[SIAM J. Discrete Math., 7 (1994年), pp.516-530] 最合适, 并解决Alon, Chung 和 Graham[SIAM. J. Discrete Math., 7 (1994年), pp.516-530] 。