Evolutionary algorithms (EAs) are a kind of nature-inspired general-purpose optimization algorithm, and have shown empirically good performance in solving various real-word optimization problems. During the past two decades, promising results on the running time analysis (one essential theoretical aspect) of EAs have been obtained, while most of them focused on isolated combinatorial optimization problems, which do not reflect the general-purpose nature of EAs. To provide a general theoretical explanation of the behavior of EAs, it is desirable to study their performance on general classes of combinatorial optimization problems. To the best of our knowledge, the only result towards this direction is the provably good approximation guarantees of EAs for the problem class of maximizing monotone submodular functions with matroid constraints. The aim of this work is to contribute to this line of research. Considering that many combinatorial optimization problems involve non-monotone or non-submodular objective functions, we study the general problem classes, maximizing submodular functions with/without a size constraint and maximizing monotone approximately submodular functions with a size constraint. We prove that a simple multi-objective EA called GSEMO-C can generally achieve good approximation guarantees in polynomial expected running time.
翻译:进化算法(EAs)是一种自然激励的通用优化算法,在解决各种实际优化问题方面表现出了良好的实证表现。在过去二十年中,在对EA的运行时间分析(一个基本的理论方面)方面,取得了有希望的结果,而大多数这种算法侧重于孤立的组合优化问题,并不反映EA的通用性质。为了对EA的行为提供一般性的理论解释,我们最好研究它们对于组合优化问题的一般类别的表现。我们最了解的是,朝这个方向取得的唯一结果是EAs在最大程度实现配机体限制的单调子模块功能的问题类别方面,有可调和的良好近似保证。这项工作的目的是促进这一研究线。考虑到许多组合优化问题涉及非单调或非子调制目标功能,我们研究一般问题类别,在不设尺寸限制的情况下最大限度地增加子调制函数,并尽可能扩大小调制的单调函数。我们证明运行一个简单、多端的多端的、预期的Q-Q-GES-GM-GM-GS-MOL-GS-MOL-GS-MOL-GNS-GMOL-GS-GLOLMOLMOLMOLMOLMOL-S-S-S-S-S-MOLMOLMOLMOLMOLMOLMOLMOLMOLMOL-S)系统。