We study nonlinear optimization problems with a stochastic objective and deterministic equality and inequality constraints, which emerge in numerous applications including finance, manufacturing, power systems and, recently, deep neural networks. We propose an active-set stochastic sequential quadratic programming (StoSQP) algorithm that utilizes a differentiable exact augmented Lagrangian as the merit function. The algorithm adaptively selects the penalty parameters of the augmented Lagrangian and performs a stochastic line search to decide the stepsize. The global convergence is established: for any initialization, the KKT residuals converge to zero almost surely. Our algorithm and analysis further develop the prior work of Na et al., (2022). Specifically, we allow nonlinear inequality constraints without requiring the strict complementary condition; refine some of the designs in Na et al., (2022) such as the feasibility error condition and the monotonically increasing sample size; strengthen the global convergence guarantee; and improve the sample complexity on the objective Hessian. We demonstrate the performance of the designed algorithm on a subset of nonlinear problems collected in CUTEst test set and on constrained logistic regression problems.
翻译:我们研究非线性优化问题,研究的是非线性优化问题,研究的是非线性优化问题,这些问题出现在金融、制造业、电力系统和最近的深神经网络等许多应用中,我们建议采用主动设置的随机相继二次二次方程式(StoSQP)算法,该算法使用一种不同而确切的扩展拉格朗吉亚作为功绩函数;算法适应性地选择扩增拉格朗吉亚人的处罚参数,并进行抽查性线搜索以决定步骤。全球趋同已经确立:任何初始化,KKKT的残留几乎肯定为零。我们的算法和分析都进一步发展了Na等人的先前工作(2022年),具体地说,我们允许非线性不平等限制,而不需要严格的补充条件;改进Na等人的一些设计(2022年),例如可行性错误状况和单质增加的抽样规模;加强全球趋同保证;提高目标赫西安的抽样复杂性。我们展示了CUTEST测试所收集的非线性问题集成的一组非线性问题设计算法的执行情况。