Prognostication for lung cancer, a leading cause of mortality, remains a complex task, as it needs to quantify the associations of risk factors and health events spanning a patient's entire life. One challenge is that an individual's disease course involves non-terminal (e.g., disease progression) and terminal (e.g., death) events, which form semi-competing relationships. Our motivation comes from the Boston Lung Cancer Study, a large lung cancer survival cohort, which investigates how risk factors influence a patient's disease trajectory. Following developments in the prediction of time-to-event outcomes with neural networks, deep learning has become a focal area for the development of risk prediction methods in survival analysis. However, limited work has been done to predict multi-state or semi-competing risk outcomes, where a patient may experience adverse events such as disease progression prior to death. We propose a novel neural expectation-maximization algorithm to bridge the gap between classical statistical approaches and machine learning. Our algorithm enables estimation of the non-parametric baseline hazards of each state transition, risk functions of predictors, and the degree of dependence among different transitions, via a multi-task deep neural network with transition-specific sub-architectures. We apply our method to the Boston Lung Cancer Study and investigate the impact of clinical and genetic predictors on disease progression and mortality.
翻译:肺癌是导致死亡的主要原因之一,对肺癌的预测仍然是一个复杂的任务,因为它需要量化风险因素和病人整个生命中健康事件的各种关联。一个挑战是,个人疾病过程涉及非终点(如疾病进展)和终点(如死亡)事件,形成半相互交错的关系。我们的动机来自波士顿肺癌研究,这是一个庞大的肺癌生存群,研究风险因素如何影响病人的疾病轨迹。随着神经网络预测时间到时结果的发展,深层次学习已成为发展生存分析风险预测方法的一个重点领域。然而,在预测多州或半相交风险结果方面,病人可能经历类似死亡前疾病进展等不利事件方面,已经做了有限的工作。我们提出了一种新的神经预期-最高度算法,以弥合经典统计方法与机器学习之间的差距。我们的算法使得可以估计每个州转变、预测器的风险到时间到时空的结果,深层次的学习已成为发展风险预测方法的一个重点领域。但是,在预测多州或半相交错的风险结果方面,人们可能经历了有限的工作,在预测多州或半相交错的风险结果中,我们通过不同转变的临床预测方法,以及波士顿病理学前期的研究,我们对病理学的路径和病理学的演变的分变。