Automatic detection of cognates helps downstream NLP tasks of Machine Translation, Cross-lingual Information Retrieval, Computational Phylogenetics and Cross-lingual Named Entity Recognition. Previous approaches for the task of cognate detection use orthographic, phonetic and semantic similarity based features sets. In this paper, we propose a novel method for enriching the feature sets, with cognitive features extracted from human readers' gaze behaviour. We collect gaze behaviour data for a small sample of cognates and show that extracted cognitive features help the task of cognate detection. However, gaze data collection and annotation is a costly task. We use the collected gaze behaviour data to predict cognitive features for a larger sample and show that predicted cognitive features, also, significantly improve the task performance. We report improvements of 10% with the collected gaze features, and 12% using the predicted gaze features, over the previously proposed approaches. Furthermore, we release the collected gaze behaviour data along with our code and cross-lingual models.
翻译:科格纳特的自动探测有助于下游国家实验室规划的机器翻译、跨语言信息检索、计算基因遗传学和跨语言命名实体识别等任务。 先前用于使用正方位、 语音和语义相似性特征组的任务。 在本文中, 我们提出了一个新颖的方法来丰富特征组, 从人类读者的凝视行为中提取认知特征。 我们收集少量的科格纳特样本的凝视行为数据, 并显示提取的认知特征有助于检测科格纳特的任务。 然而, 采集的视觉数据采集和批注是一项昂贵的任务。 我们使用收集到的凝视行为数据来预测较大样本的认知特征, 并显示预测的认知特征也显著改进了任务性。 我们报告, 收集的凝视特征改进了10%, 使用预测的凝视特征改进了12%, 超过先前提议的方法。 此外, 我们公布收集的凝视行为数据, 以及我们的代码和跨语言模型。