Identifying differences between groups is one of the most important knowledge discovery problems. The procedure, also known as contrast sets mining, is applied in a wide range of areas like medicine, industry, or economics. In the paper we present RuleKit-CS, an algorithm for contrast set mining based on separate and conquer - a well established heuristic for decision rule induction. Multiple passes accompanied with an attribute penalization scheme provide contrast sets describing same examples with different attributes, distinguishing presented approach from the standard separate and conquer. The algorithm was also generalized for regression and survival data allowing identification of contrast sets whose label attribute/survival prognosis is consistent with the label/prognosis for the predefined contrast groups. This feature, not provided by the existing approaches, further extends the usability of RuleKit-CS. Experiments on over 130 data sets from various areas and detailed analysis of selected cases confirmed RuleKit-CS to be a useful tool for discovering differences between defined groups. The algorithm was implemented as a part of the RuleKit suite available at GitHub under GNU AGPL 3 licence (https://github.com/adaa-polsl/RuleKit). Keywords: contrast sets, separate and conquer, regression, survival


翻译:识别不同群体之间差异是最重要的知识发现问题之一。 程序, 也称为对比组采矿, 适用于医学、 工业或经济学等广泛领域。 在我们介绍的论文中, “ 规则Kit-CS” 是一种基于分别和征服的对比组采矿算法, 这是一种公认的决策规则诱导的超常现象。 多张带属性惩罚制度的对比组提供了描述具有不同属性的相同实例的对比组, 区别了标准独立和征服的方法。 算法也用于回归和生存数据, 从而能够识别标签属性/ 生存状态预定义对比组的对比组。 这个特征不是由现有方法提供的,而是进一步扩大了“规则Kit- CS”的可用性。 对不同领域的130多套数据集的实验和对选定案例的详细分析证实“规则Kit-CS”是发现特定群体之间差异的有用工具。 该算法是GNU AGPL 3许可证( https://github.com/adapolis)下GULUK- Revigards surgards)下Github 3许可(http:// grevieward)下可使用的规则Keptragard- supliviquestations) 。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月3日
Arxiv
0+阅读 · 2023年5月1日
Arxiv
54+阅读 · 2022年1月1日
Arxiv
14+阅读 · 2021年3月10日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员