Neural networks with recurrent asymmetric couplings are important to understand how episodic memories are encoded in the brain. Here, we integrate the experimental observation of wide synaptic integration window into our model of sequence retrieval in the continuous time dynamics. The model with non-normal neuron-interactions is theoretically studied by deriving a random matrix theory of the Jacobian matrix in neural dynamics. The spectra bears several distinct features, such as breaking rotational symmetry about the origin, and the emergence of nested voids within the spectrum boundary. The spectral density is thus highly non-uniformly distributed in the complex plane. The random matrix theory also predicts a transition to chaos. In particular, the edge of chaos provides computational benefits for the sequential retrieval of memories. Our work provides a systematic study of time-lagged correlations with arbitrary time delays, and thus can inspire future studies of a broad class of memory models, and even big data analysis of biological time series.
翻译:神经网络中反复出现不对称连接,对于理解大脑内如何编码相异记忆很重要。 在这里, 我们将广泛合成整合窗口的实验观测纳入连续时间动态的序列检索模型中。 与非正常神经互动模型的模型在理论上通过在神经动态中得出雅各矩阵随机矩阵理论来研究。 光谱具有若干不同的特点, 如打破对源的旋转对称, 以及频谱边界内嵌巢空隙的出现。 因此光谱密度在复杂的平面中分布非常不统一。 随机矩阵理论还预测向混乱的过渡。 特别是, 混乱的边缘为连续检索记忆提供了计算效益。 我们的工作提供了对时间滞后与任意时间延迟的关联的系统研究, 从而可以激发对广泛记忆模型的未来研究, 甚至对生物时间序列的大型数据分析。