Search-optimization problems are plentiful in scientific and engineering domains. Artificial intelligence has long contributed to the development of search algorithms and declarative programming languages geared toward solving and modeling search-optimization problems. Automated reasoning and knowledge representation are the subfields of AI that are particularly vested in these developments. Many popular automated reasoning paradigms provide users with languages supporting optimization statements: answer set programming or MaxSAT on minone, to name a few. These paradigms vary significantly in their languages and in the ways they express quality conditions on computed solutions. Here we propose a unifying framework of so-called weight systems that eliminates syntactic distinctions between paradigms and allows us to see essential similarities and differences between optimization statements provided by paradigms. This unifying outlook has significant simplifying and explanatory potential in the studies of optimization and modularity in automated reasoning and knowledge representation. It also supplies researchers with a convenient tool for proving the formal properties of distinct frameworks; bridging these frameworks; and facilitating the development of translational solvers.


翻译:---- 命题框架优化的抽象视角 翻译后的摘要: 搜索优化问题在科学和工程领域中十分常见。人工智能长期以来一直在为解决和建模搜索优化问题开发搜索算法和声明式编程语言。自动推理和知识表示是人工智能特别关注这些发展的子领域。许多流行的自动推理范例为用户提供支持优化陈述的语言:例如maxone和minone的答案集规划(ASP),等等。这些范例在它们的语言和表达计算解的质量条件的方式上有很大的差异。在此,我们提出了所谓的权重系统的统一框架,消除了范例之间的语法区别,并允许我们看到范例提供的优化陈述之间的本质相似性和差异性。这种统一的视角在自动推理和知识表示中的优化和模块化研究中具有重要的简化和解释潜力。它还为研究人员提供了一个方便的工具,用于证明不同框架的形式属性;建立这些框架之间的桥梁;和促进翻译求解器的开发。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
百篇论文纵览大型语言模型最新研究进展
专知会员服务
69+阅读 · 2023年3月31日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月11日
Arxiv
0+阅读 · 2023年5月10日
Arxiv
44+阅读 · 2022年9月6日
Arxiv
16+阅读 · 2021年11月27日
Arxiv
37+阅读 · 2021年9月28日
Arxiv
12+阅读 · 2020年6月20日
VIP会员
相关VIP内容
百篇论文纵览大型语言模型最新研究进展
专知会员服务
69+阅读 · 2023年3月31日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员