We propose an image-to-image translation framework for facial attribute editing with disentangled interpretable latent directions. Facial attribute editing task faces the challenges of targeted attribute editing with controllable strength and disentanglement in the representations of attributes to preserve the other attributes during edits. For this goal, inspired by the latent space factorization works of fixed pretrained GANs, we design the attribute editing by latent space factorization, and for each attribute, we learn a linear direction that is orthogonal to the others. We train these directions with orthogonality constraints and disentanglement losses. To project images to semantically organized latent spaces, we set an encoder-decoder architecture with attention-based skip connections. We extensively compare with previous image translation algorithms and editing with pretrained GAN works. Our extensive experiments show that our method significantly improves over the state-of-the-arts. Project page: https://yusufdalva.github.io/vecgan
翻译:我们为面部属性编辑建议一个图像到图像的翻译框架,以分解可解释的潜在方向。 Facial 属性编辑任务面临着有针对性属性编辑的挑战,它具有可控制的力量和在描述属性时分解来保护编辑中的其他属性。为此,在固定的预先训练的GANs的潜在空间因子化工程的启发下,我们设计了以潜在空间因子化的属性编辑,对于每个属性,我们学习了向其它属性的直线方向。我们用正方形限制和分解损失来训练这些方向。为了将图像投射到有组织性的潜在空间,我们设置了一个以注意为基础跳过连接的编码-解密结构。我们广泛比较了先前的图像翻译算法和经过预先训练的GAN作品的编辑。我们的广泛实验显示,我们的方法大大改进了状态-艺术。项目网页: https://yusufdalva.github.io/vecgan。