We study a general Markov game with metric switching costs: in each round, the player adaptively chooses one of several Markov chains to advance with the objective of minimizing the expected cost for at least $k$ chains to reach their target states. If the player decides to play a different chain, an additional switching cost is incurred. The special case in which there is no switching cost was solved optimally by Dumitriu, Tetali, and Winkler [DTW03] by a variant of the celebrated Gittins Index for the classical multi-armed bandit (MAB) problem with Markovian rewards [Gittins 74, Gittins79]. However, for multi-armed bandit (MAB) with nontrivial switching cost, even if the switching cost is a constant, the classic paper by Banks and Sundaram [BS94] showed that no index strategy can be optimal. In this paper, we complement their result and show there is a simple index strategy that achieves a constant approximation factor if the switching cost is constant and $k=1$. To the best of our knowledge, this is the first index strategy that achieves a constant approximation factor for a general MAB variant with switching costs. For the general metric, we propose a more involved constant-factor approximation algorithm, via a nontrivial reduction to the stochastic $k$-TSP problem, in which a Markov chain is approximated by a random variable. Our analysis makes extensive use of various interesting properties of the Gittins index.


翻译:我们研究了一个通用的Markov游戏,其成本为标准转换成本:在每一回合中,玩家都适应性地选择了几个Markov 链条中的一个来推进Markov 奖赏[Gittins 74, Gittins79]。然而,如果玩家决定玩一个不同的链,就会产生额外的转换成本。如果玩家决定玩一个不同的链条,那么,就会产生额外的转换成本。没有转换成本的特殊案例,Dumitriu、Tetali和Winkler[DTW03]以一个备效的Gittins指数变量解决了。对于古典多臂匪盗(MAB)的奖赏问题[Gittins 74, Gittins79]。然而,对于多臂匪队(MAB)以非三重转换成本到达目标状态的预期成本。即使开关成本是固定不变的,银行和Sundarram[BS94]的经典论文表明,没有哪个指数战略是最佳的。在本文中,我们有一个简单的指数战略,如果转换成本不变和美元。 。对于我们的知识来说,这是通过一个不固定的变式的变式的变式战略,我们总的变式的变式的变式的变式的变式的变式的变式的GLF 。

0
下载
关闭预览

相关内容

马尔可夫链,因安德烈·马尔可夫(A.A.Markov,1856-1922)得名,是指数学中具有马尔可夫性质的离散事件随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当前以前的历史状态)对于预测将来(即当前以后的未来状态)是无关的。 在马尔可夫链的每一步,系统根据概率分布,可以从一个状态变到另一个状态,也可以保持当前状态。状态的改变叫做转移,与不同的状态改变相关的概率叫做转移概率。随机漫步就是马尔可夫链的例子。随机漫步中每一步的状态是在图形中的点,每一步可以移动到任何一个相邻的点,在这里移动到每一个点的概率都是相同的(无论之前漫步路径是如何的)。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
4+阅读 · 2018年5月24日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员