We consider a facility location game in which $n$ agents reside at known locations on a path, and $k$ heterogeneous facilities are to be constructed on the path. Each agent is adversely affected by some subset of the facilities, and is unaffected by the others. We design two classes of mechanisms for choosing the facility locations given the reported agent preferences: utilitarian mechanisms that strive to maximize social welfare (i.e., to be efficient), and egalitarian mechanisms that strive to maximize the minimum welfare. For the utilitarian objective, we present a weakly group-strategyproof efficient mechanism for up to three facilities, we give a strongly group-strategyproof mechanism that guarantees at least half of the optimal social welfare for arbitrary $k$, and we prove that no strongly group-strategyproof mechanism achieves an approximation ratio of $5/4$ for one facility. For the egalitarian objective, we present a strategyproof egalitarian mechanism for arbitrary $k$, and we prove that no weakly group-strategyproof mechanism achieves a $o(\sqrt{n})$ approximation ratio for two facilities. We extend our egalitarian results to the case where the agents are located on a cycle, and we extend our first egalitarian result to the case where the agents are located in the unit square.


翻译:我们考虑的是设施地点游戏,在这种游戏中,一美元代理商居住在已知的道路上,一美元混合设施将建造在道路上。每个代理商都受到部分设施的不利影响,不受其他代理商的影响。我们设计了两类机制,根据所报告的代理商的偏好,选择设施地点:实用机制,力求尽量扩大社会福利(即效率高),平等机制,力求尽量扩大最低福利。关于功利主义目标,我们为最多三个设施提出了一个薄弱的集团防战略高效机制,我们提供了强有力的集团防战略机制,保证了至少一半的任意社会福利。我们证明,没有一个强有力的集团防战略机制能够使一个设施达到5/4美元的近似比率。为了平等目标,我们为任意的美元提供一个战略防偏差的平等机制,我们证明,对于三个设施来说,我们没有薄弱的集团防战略高效机制,我们提供了一种最差的美元(sqrt{n})近似比率,我们提供了一种强有力的集体战略机制,可以保证至少一半的最佳社会福利为任意的美元,而且不受其他设施不受影响。我们证明,任何强烈的集团防制衡机制都无法达到5/4美元的近似比率。为了一个设施,我们将一个稳定的代理商进入一个正常的平方,我们将处于一个周期。

0
下载
关闭预览

相关内容

【经典书】算法博弈论,775页pdf,Algorithmic Game Theory
专知会员服务
149+阅读 · 2021年5月9日
专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
机器翻译 | Bleu:此蓝;非彼蓝
黑龙江大学自然语言处理实验室
4+阅读 · 2018年3月14日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
大数据的分布式算法
待字闺中
3+阅读 · 2017年6月13日
Arxiv
0+阅读 · 2021年11月2日
Arxiv
0+阅读 · 2021年11月1日
Arxiv
0+阅读 · 2021年11月1日
Arxiv
0+阅读 · 2021年10月30日
Arxiv
0+阅读 · 2021年10月29日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
机器翻译 | Bleu:此蓝;非彼蓝
黑龙江大学自然语言处理实验室
4+阅读 · 2018年3月14日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
大数据的分布式算法
待字闺中
3+阅读 · 2017年6月13日
Top
微信扫码咨询专知VIP会员