Choosing a suitable algorithm from the myriads of different search heuristics is difficult when faced with a novel optimization problem. In this work, we argue that the purely academic question of what could be the best possible algorithm in a certain broad class of black-box optimizers can give fruitful indications in which direction to search for good established optimization heuristics. We demonstrate this approach on the recently proposed DLB benchmark, for which the only known results are $O(n^3)$ runtimes for several classic evolutionary algorithms and an $O(n^2 \log n)$ runtime for an estimation-of-distribution algorithm. Our finding that the unary unbiased black-box complexity is only $O(n^2)$ suggests the Metropolis algorithm as an interesting candidate and we prove that it solves the DLB problem in quadratic time. Since we also prove that better runtimes cannot be obtained in the class of unary unbiased algorithms, we shift our attention to algorithms that use the information of more parents to generate new solutions. An artificial algorithm of this type having an $O(n \log n)$ runtime leads to the result that the significance-based compact genetic algorithm (sig-cGA) can solve the DLB problem also in time $O(n \log n)$. Our experiments show a remarkably good performance of the Metropolis algorithm, clearly the best of all algorithms regarded for reasonable problem sizes.
翻译:面对新的优化问题, 很难从各种不同的搜索超自然学中选择合适的算法。 在这项工作中, 我们争辩说, 一个纯粹的学术问题, 在一个广泛的黑盒优化器中, 什么样的算法可能是最佳的算法, 能够提供有成果的指向, 寻找已经建立的良好优化超自然主义。 我们在最近提议的 DLB 基准上展示了这个方法, 唯一已知的结果是 $O( n)3) $( $3), 用于几个经典进化算法和 $O( n%2\log n) 的运行时间, 用于估算分配算法的运行时间。 我们发现, 一个纯正公平黑盒的算法复杂程度只有$( n) $( n2), 表明Metopolis算法是一个有趣的候选者, 我们证明它解决了在四重时的 DLB 问题的方法。 我们还证明, 在不偏偏倚的算法类中, 我们的运行时间无法取得更好的时间, 我们的注意力转向使用更多父母的信息来产生新解决方案的算法。 。 这种人为算算法, $( $( nclog) rationalalalalal) ligalalalallog) lialalalalalalallog ex exalusalgalgals magalgals lax mas) 可以清楚地显示我们所有的Galgalgalgalgalgalgalgalgalus 。