The task of computing homomorphisms between two finite relational structures $\mathcal{A}$ and $\mathcal{B}$ is a well-studied question with numerous applications. Since the set $\operatorname{Hom}(\mathcal{A},\mathcal{B})$ of all homomorphisms may be very large having a method of representing it in a succinct way, especially one which enables us to perform efficient enumeration and counting, could be extremely useful. One simple yet powerful way of doing so is to decompose $\operatorname{Hom}(\mathcal{A},\mathcal{B})$ using union and Cartesian product. Such data structures, called d-representations, have been introduced by Olteanu and Zavodny in the context of database theory. Their results also imply that if the treewidth of the left-hand side structure $\mathcal{A}$ is bounded, then a d-representation of polynomial size can be found in polynomial time. We show that for structures of bounded arity this is optimal: if the treewidth is unbounded then there are instances where the size of any d-representation is superpolynomial. Along the way we develop tools for proving lower bounds on the size of d-representations, in particular we define a notion of reduction suitable for this context and prove an almost tight lower bound on the size of d-representations of all $k$-cliques in a graph.


翻译:计算两个有限关系结构之间的同质性任务 $\ mathcal{A} $ 和 $\ mathcal{B} $\ mathcal{B} 是一个有很多应用程序的很好研究的问题。 自从设定 $\ operallname{Hom} (\ mathcal{A},\ mathcal{B}) 以来, 所有同质性结构中的美元( mathcal{A},\ mathcal{B}) 任务可能非常大, 可以用简洁的方法来代表它, 特别是使我们能够高效查点和计数的方法, 可能非常有用。 一个简单但有力的方法就是使用联盟和卡通制产品来解分解 $\ operatorname{Hom} (macal{A},\ mathcal{B} $( maxcal{B} $ $), 是一个很好的问题。 自从设置以来, 由奥捷尔坦( ) 和Zavaddaddaddddn ) 理论的缩缩缩缩度结构, 结构被引入了。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月21日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
27+阅读 · 2018年4月12日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员