A connectome is a map of the structural and/or functional connections in the brain. This information-rich representation has the potential to transform our understanding of the relationship between patterns in brain connectivity and neurological processes, disorders, and diseases. However, existing computational techniques used to analyze connectomes are often insufficient for interrogating multi-subject connectomics datasets. Several methods are either solely designed to analyze single connectomes, or leverage heuristic graph invariants that ignore the complete topology of connections between brain regions. To enable more rigorous comparative connectomics analysis, we introduce robust and interpretable statistical methods motivated by recent theoretical advances in random graph models. These methods enable simultaneous analysis of multiple connectomes across different scales of network topology, facilitating the discovery of hierarchical brain structures that vary in relation with phenotypic profiles. We validated these methods through extensive simulation studies, as well as synthetic and real-data experiments. Using a set of high-resolution connectomes obtained from genetically distinct mouse strains (including the BTBR mouse -- a standard model of autism -- and three behavioral wild-types), we show that these methods uncover valuable latent information in multi-subject connectomics data and yield novel insights into the connective correlates of neurological phenotypes.
翻译:连接体是大脑结构和(或)功能连接的地图。 这种信息丰富的表达方式有可能改变我们对大脑连接模式与神经系统过程、障碍和疾病之间关系的理解。 但是,用于分析连接体的现有计算技术往往不足以查询多子连接组数据集。 几种方法要么只是用来分析单一连接体,要么是用来分析单一连接体,或者用来分析无视大脑区域之间连接的完整地形的杠杆休眠图变量。 为了进行更严格的比较连接组分析,我们引入了由随机图形模型最近理论进步所驱动的强有力和可解释的统计方法。这些方法能够同时分析不同网络结构规模的多个连接体,便于发现与外观特征不同的等级大脑结构。 我们通过广泛的模拟研究以及合成和真实数据实验来验证这些方法。 使用一组高分辨率连接体(包括BTBR老鼠 -- -- 一个标准的自闭式模型 -- -- 三个行为型野生型模型),我们展示了这些方法在多子类比型链接中可连接的可贵的直系数据。