Surgical instrument segmentation is crucial in surgical scene understanding, thereby facilitating surgical safety. Existing algorithms directly detected all instruments of pre-defined categories in the input image, lacking the capability to segment specific instruments according to the surgeon's intention. During different stages of surgery, surgeons exhibit varying preferences and focus toward different surgical instruments. Therefore, an instrument segmentation algorithm that adheres to the surgeon's intention can minimize distractions from irrelevant instruments and assist surgeons to a great extent. The recent Segment Anything Model (SAM) reveals the capability to segment objects following prompts, but the manual annotations for prompts are impractical during the surgery. To address these limitations in operating rooms, we propose an audio-driven surgical instrument segmentation framework, named ASI-Seg, to accurately segment the required surgical instruments by parsing the audio commands of surgeons. Specifically, we propose an intention-oriented multimodal fusion to interpret the segmentation intention from audio commands and retrieve relevant instrument details to facilitate segmentation. Moreover, to guide our ASI-Seg segment of the required surgical instruments, we devise a contrastive learning prompt encoder to effectively distinguish the required instruments from the irrelevant ones. Therefore, our ASI-Seg promotes the workflow in the operating rooms, thereby providing targeted support and reducing the cognitive load on surgeons. Extensive experiments are performed to validate the ASI-Seg framework, which reveals remarkable advantages over classical state-of-the-art and medical SAMs in both semantic segmentation and intention-oriented segmentation. The source code is available at https://github.com/Zonmgin-Zhang/ASI-Seg.
翻译:暂无翻译