As a rising star in the field of natural language processing, question answering systems (Q&A Systems) are widely used in all walks of life. Compared with other scenarios, the applicationin financial scenario has strong requirements in the traceability and interpretability of the Q&A systems. In addition, since the demand for artificial intelligence technology has gradually shifted from the initial computational intelligence to cognitive intelligence, this research mainly focuses on the financial numerical reasoning dataset - FinQA. In the shared task, the objective is to generate the reasoning program and the final answer according to the given financial report containing text and tables. We use the method based on DeBERTa pre-trained language model, with additional optimization methods including multi-model fusion, training set combination on this basis. We finally obtain an execution accuracy of 68.99 and a program accuracy of 64.53, ranking No. 4 in the 2022 FinQA Challenge.
翻译:在自然语言处理领域,问答系统( ⁇ A Systems)作为不断上升的自然语言处理领域的恒星,在生活各行各业都广泛使用。与其他情景相比,金融应用方案在QA系统的可追踪性和可解释性方面有着强烈的要求。此外,由于对人工智能技术的需求已从最初的计算智能逐渐转向认知智能,这一研究主要侧重于金融数字推理数据集-FinQA。在共同的任务中,目标是根据包含文本和表格的财务报告生成推理程序和最终答案。我们使用基于DeBERTA预先培训的语言模型的方法,并使用其他优化方法,包括多模型聚合、基于这一基础的培训组合。我们最终获得了68.99的执行精度和64.53程序精度,在2022年FinQA挑战中排名第4。