We conceptualize explainability in terms of logic and formula size, giving a number of related definitions of explainability in a very general setting. Our main interest is the so-called special explanation problem which aims to explain the truth value of an input formula in an input model. The explanation is a formula of minimal size that (1) agrees with the input formula on the input model and (2) transmits the involved truth value to the input formula globally, i.e., on every model. As an important example case, we study propositional logic in this setting and show that the special explainability problem is complete for the second level of the polynomial hierarchy. We also provide an implementation of this problem in answer set programming and investigate its capacity in relation to explaining answers to the n-queens and dominating set problems.
翻译:我们从逻辑和公式大小的角度概念化了可解释性,给出了在非常笼统的环境下可解释性的若干相关定义。我们的主要兴趣在于所谓的特殊解释问题,其目的是解释输入模式中输入公式的真相价值。解释是一个最小尺寸的公式,即(1) 同意输入模式的输入公式,(2) 将所涉的真相价值传递到全球输入公式, 即每个模型。作为一个重要的实例,我们研究这个环境中的假设逻辑,并表明对于多等等级的第二等级来说,特别可解释性问题已经完全解决。我们还在回答设定的编程时提出这一问题的实施,并调查其在解释对n- queens 和 支配性问题的答复方面的能力。