Data heterogeneity is an inherent challenge that hinders the performance of federated learning (FL). Recent studies have identified the biased classifiers of local models as the key bottleneck. Previous attempts have used classifier calibration after FL training, but this approach falls short in improving the poor feature representations caused by training-time classifier biases. Resolving the classifier bias dilemma in FL requires a full understanding of the mechanisms behind the classifier. Recent advances in neural collapse have shown that the classifiers and feature prototypes under perfect training scenarios collapse into an optimal structure called simplex equiangular tight frame (ETF). Building on this neural collapse insight, we propose a solution to the FL's classifier bias problem by utilizing a synthetic and fixed ETF classifier during training. The optimal classifier structure enables all clients to learn unified and optimal feature representations even under extremely heterogeneous data. We devise several effective modules to better adapt the ETF structure in FL, achieving both high generalization and personalization. Extensive experiments demonstrate that our method achieves state-of-the-art performances on CIFAR-10, CIFAR-100, and Tiny-ImageNet.
翻译:无惧分类器偏差:仿真型和固定型分类器启发的神经折叠联邦学习
Translated abstract:
本文研究联邦学习(FL)中存在的数据异质性问题。最近的研究已经确认本地模型的分类器存在偏差是性能瓶颈的关键。之前的尝试在FL训练后使用分类器校准,但此方法未能改善训练时分类器偏差导致的差劣特征表示。解决FL中分类器偏差问题需要全面了解分类器背后的机制。最近神经折叠的进展表明,分类器和特征原型在完美的训练场景下折叠成一种优化结构,称为等角紧框架(ETF)。基于这种神经折叠的认识,我们提出了一种解决FL分类器偏差问题的方法,即在训练过程中利用一种仿真型和固定型ETF分类器。优化的分类器结构使所有客户端学习到统一和优化的特征表示,即使在极端异构数据下也能做到。我们设计了几个有效的模块来更好地适应FL中的ETF结构,实现了高泛化和个性化。广泛的实验表明,我们的方法在CIFAR-10、CIFAR-100和Tiny-ImageNe