Data heterogeneity is an inherent challenge that hinders the performance of federated learning (FL). Recent studies have identified the biased classifiers of local models as the key bottleneck. Previous attempts have used classifier calibration after FL training, but this approach falls short in improving the poor feature representations caused by training-time classifier biases. Resolving the classifier bias dilemma in FL requires a full understanding of the mechanisms behind the classifier. Recent advances in neural collapse have shown that the classifiers and feature prototypes under perfect training scenarios collapse into an optimal structure called simplex equiangular tight frame (ETF). Building on this neural collapse insight, we propose a solution to the FL's classifier bias problem by utilizing a synthetic and fixed ETF classifier during training. The optimal classifier structure enables all clients to learn unified and optimal feature representations even under extremely heterogeneous data. We devise several effective modules to better adapt the ETF structure in FL, achieving both high generalization and personalization. Extensive experiments demonstrate that our method achieves state-of-the-art performances on CIFAR-10, CIFAR-100, and Tiny-ImageNet.


翻译:无惧分类器偏差:仿真型和固定型分类器启发的神经折叠联邦学习 Translated abstract: 本文研究联邦学习(FL)中存在的数据异质性问题。最近的研究已经确认本地模型的分类器存在偏差是性能瓶颈的关键。之前的尝试在FL训练后使用分类器校准,但此方法未能改善训练时分类器偏差导致的差劣特征表示。解决FL中分类器偏差问题需要全面了解分类器背后的机制。最近神经折叠的进展表明,分类器和特征原型在完美的训练场景下折叠成一种优化结构,称为等角紧框架(ETF)。基于这种神经折叠的认识,我们提出了一种解决FL分类器偏差问题的方法,即在训练过程中利用一种仿真型和固定型ETF分类器。优化的分类器结构使所有客户端学习到统一和优化的特征表示,即使在极端异构数据下也能做到。我们设计了几个有效的模块来更好地适应FL中的ETF结构,实现了高泛化和个性化。广泛的实验表明,我们的方法在CIFAR-10、CIFAR-100和Tiny-ImageNe

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月8日
Arxiv
12+阅读 · 2023年2月7日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员