Pre-trained word representations became a key component in many NLP tasks. However, the global geometry of the word embeddings remains poorly understood. In this paper, we demonstrate that a typical word embeddings cloud is shaped as a high-dimensional simplex with interpretable vertices and propose a simple yet effective method for enumeration of these vertices. We show that the proposed method can detect and describe vertices of the simplex for GloVe and fasttext spaces.


翻译:未经培训的文字表达方法成为许多国家语言方案任务的一个关键组成部分。 但是,嵌入词的全球几何仍然不易理解。 在本文中,我们证明典型的字嵌入云是高维的简单字形,带有可解释的脊椎,我们提出了列举这些脊椎的简单而有效的方法。我们表明,拟议的方法可以探测和描述GloVe和快速文本空间的简单字眼的脊椎。

0
下载
关闭预览

相关内容

分散式表示即将语言表示为稠密、低维、连续的向量。 研究者最早发现学习得到词嵌入之间存在类比关系。比如apple−apples ≈ car−cars, man−woman ≈ king – queen 等。这些方法都可以直接在大规模无标注语料上进行训练。词嵌入的质量也非常依赖于上下文窗口大小的选择。通常大的上下文窗口学到的词嵌入更反映主题信息,而小的上下文窗口学到的词嵌入更反映词的功能和上下文语义信息。
专知会员服务
89+阅读 · 2021年6月29日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
一文读懂Attention机制
机器学习与推荐算法
63+阅读 · 2020年6月9日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT源码分析PART I
AINLP
38+阅读 · 2019年7月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2020年5月25日
Meta-Learning with Latent Embedding Optimization
Arxiv
6+阅读 · 2018年7月16日
VIP会员
相关资讯
一文读懂Attention机制
机器学习与推荐算法
63+阅读 · 2020年6月9日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT源码分析PART I
AINLP
38+阅读 · 2019年7月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员