Interpretability methods like Integrated Gradient and LIME are popular choices for explaining natural language model predictions with relative word importance scores. These interpretations need to be robust for trustworthy NLP applications in high-stake areas like medicine or finance. Our paper demonstrates how interpretations can be manipulated by making simple word perturbations on an input text. Via a small portion of word-level swaps, these adversarial perturbations aim to make the resulting text semantically and spatially similar to its seed input (therefore sharing similar interpretations). Simultaneously, the generated examples achieve the same prediction label as the seed yet are given a substantially different explanation by the interpretation methods. Our experiments generate fragile interpretations to attack two SOTA interpretation methods, across three popular Transformer models and on two different NLP datasets. We observe that the rank order correlation drops by over 20% when less than 10% of words are perturbed on average. Further, rank-order correlation keeps decreasing as more words get perturbed. Furthermore, we demonstrate that candidates generated from our method have good quality metrics.


翻译:综合梯度和 LIME 等解释性方法在解释自然语言模型预测的自然语言模型和相对单词重要性分数方面是受欢迎的选择。 这些解释对于医学或金融等高占用地区值得信赖的 NLP 应用来说需要强力。 我们的文件展示了如何通过对输入文本进行简单的单词扰动来操纵解释。 通过一小部份的单词级交换, 这些对称扰动的目的是使由此产生的文本在语义和空间上与种子输入相似( 从而共享相似的解释 ) 。 同时, 生成的示例在预测标签上与种子相同, 却通过解释方法给出了完全不同的解释。 我们的实验产生了两种 SOTA 解释方法的脆弱解释, 跨越三个流行的变异模型和两个不同的 NLP 数据集。 我们观察到, 当平均的单位关系小于10%时, 排序相关性会下降20%以上。 此外, 级序相关性随着更多的单词被侵入, 不断下降。 此外, 我们证明我们的方法产生的候选人具有良好的质量指标 。

0
下载
关闭预览

相关内容

【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年10月6日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Interpretable Adversarial Training for Text
Arxiv
5+阅读 · 2019年5月30日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
16+阅读 · 2018年2月7日
VIP会员
相关VIP内容
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员