In the paper we study a deep learning based method to solve the multicell power control problem for sum rate maximization subject to per-user rate constraints and per-base station (BS) power constraints. The core difficulty of this problem is how to ensure that the learned power control results by the deep neural network (DNN) satisfy the per-user rate constraints. To tackle the difficulty, we propose to cascade a projection block after a traditional DNN, which projects the infeasible power control results onto the constraint set. The projection block is designed based on a geometrical interpretation of the constraints, which is of low complexity, meeting the real-time requirement of online applications. Explicit-form expression of the backpropagated gradient is derived for the proposed projection block, with which the DNN can be trained to directly maximize the sum rate via unsupervised learning. We also develop a heuristic implementation of the projection block to reduce the size of DNN. Simulation results demonstrate the advantages of the proposed method over existing deep learning and numerical optimization~methods, and show the robustness of the proposed method with the model mismatch between training and testing~datasets.


翻译:在论文中,我们研究了一种深层次的基于学习的方法,以解决多细胞电源控制问题,在受每个用户费率限制和每个基地站(BS)电源限制的情况下,使电率最大化。这个问题的核心困难在于如何确保深神经网络(DNN)所学到的电力控制结果满足每个用户的电率限制。为解决这一困难,我们提议在传统的DNN(将不可行的电力控制结果投射到约束装置上)之后,将一个投影块升级。投影块的设计基于对各种制约因素的几何解释,即低复杂性,满足在线应用程序的实时要求。为拟议的投影块提供反向变色梯度的表达方式,可据此训练DNNN(DN)通过不受监督的学习直接实现总速率最大化。我们还拟出一个投影块,以缩小DNNN的尺寸。模拟结果显示拟议方法比现有的深度学习和数字优化要好,并显示拟议方法与培训与测试~数据系统之间的模型不匹配的强性。

0
下载
关闭预览

相关内容

【CMU】最新深度学习课程, Introduction to Deep Learning
专知会员服务
37+阅读 · 2020年9月12日
【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
58+阅读 · 2019年11月10日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
156+阅读 · 2019年10月12日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
61+阅读 · 2019年8月26日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年2月9日
Arxiv
1+阅读 · 2021年2月5日
Arxiv
7+阅读 · 2020年10月9日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员