In Federated Learning (FL), a group of workers participate to build a global model under the coordination of one node, the chief. Regarding the cybersecurity of FL, some attacks aim at injecting the fabricated local model updates into the system. Some defenses are based on malicious worker detection and behavioral pattern analysis. In this context, without timely and dynamic monitoring methods, the chief cannot detect and remove the malicious or unreliable workers from the system. Our work emphasize the urgency to prepare the federated learning process for monitoring and eventually behavioral pattern analysis. We study the information inside the learning process in the early stages of training, propose a monitoring process and evaluate the monitoring period required. The aim is to analyse at what time is it appropriate to start the detection algorithm in order to remove the malicious or unreliable workers from the system and optimise the defense mechanism deployment. We tested our strategy on a behavioral pattern analysis defense applied to the FL process of different benchmark systems for text and image classification. Our results show that the monitoring process lowers false positives and false negatives and consequently increases system efficiency by enabling the distributed learning system to achieve better performance in the early stage of training.
翻译:在联邦学习(FL)中,一组工人参与在同一个节点(主任)的协调下建立一个全球模型。关于FL网络安全,一些攻击的目的是将伪造的地方模型更新输入系统。一些防御是基于恶意工人的检测和行为模式分析。在这方面,如果没有及时和动态的监测方法,主任就无法探测和清除系统中的恶意或不可靠的工人。我们的工作强调为监测和最终行为模式分析准备联合学习过程的紧迫性。我们在培训的早期阶段研究学习过程内的信息,建议监测过程并评估所需的监测时间。目的是分析在什么时间开始检测算法是合适的,以便从系统中清除恶意或不可靠的工人,并优化国防机制的部署。我们测试了适用于不同文本和图像分类基准系统FL进程的行为模式分析辩护战略。我们的结果显示,监测过程降低了虚假的正反效果,从而通过使分布式学习系统在培训的早期阶段取得更好的业绩来提高系统的效率。