Affective polarization is more than mere antagonism as it appears when negative interactions happen mostly across political divisions. Research in polarization usually assumes a given definition of political divisions or conflates polarization and disagreement as the same phenomenon. Leveraging on novel data sources of positive and negative online interactions, we present a method to computationally discover the fault lines of an online community with minimal assumptions on the dividing issues. This enables us to unpack two factors of polarization: Antagonism, which is the general prevalence of hostility in online interaction, and Alignment, which captures how negative relations exist across groups (divisiveness) while positive interactions are contained within (cohesiveness). We apply our approach to Birdwatch, a US-based Twitter fact-checking community, and to the discussion forums of DerStandard, an Austrian online newspaper. Our results reveal that both communities are divided into two large groups and that their separation follows political identities and topics. We can identify issues across various combinations of antagonism and alignment in DerStandard, evidencing that these two metrics are not equivalent. Our methods provide a time-resolved picture that illustrates the separate contribution of cohesiveness and divisiveness and the role of controversial elections and events in the dynamics of alignment.
翻译:暂无翻译