Radar-based Human Activity Recognition (HAR) offers privacy and robustness over camera-based methods, yet remains computationally demanding for edge deployment. We present the first use of Spiking Neural Networks (SNNs) for radar-based HAR on aircraft marshalling signal classification. Our novel hybrid architecture combines convolutional modules for spatial feature extraction with Leaky Integrate-and-Fire (LIF) neurons for temporal processing, inherently capturing gesture dynamics. The model reduces trainable parameters by 88\% with under 1\% accuracy loss compared to baselines, and generalizes well to the Soli gesture dataset. Through systematic comparisons with Artificial Neural Networks, we demonstrate the trade-offs of spiking computation in terms of accuracy, latency, memory, and energy, establishing SNNs as an efficient and competitive solution for radar-based HAR.
翻译:暂无翻译