We show that the sparsified block elimination algorithm for solving undirected Laplacian linear systems from [Kyng-Lee-Peng-Sachdeva-Spielman STOC'16] directly works for directed Laplacians. Given access to a sparsification algorithm that, on graphs with $n$ vertices and $m$ edges, takes time $\mathcal{T}_{\rm S}(m)$ to output a sparsifier with $\mathcal{N}_{\rm S}(n)$ edges, our algorithm solves a directed Eulerian system on $n$ vertices and $m$ edges to $\epsilon$ relative accuracy in time $$ O(\mathcal{T}_{\rm S}(m) + {\mathcal{N}_{\rm S}(n)\log {n}\log(n/\epsilon)}) + \tilde{O}(\mathcal{T}_{\rm S}(\mathcal{N}_{\rm S}(n)) \log n), $$ where the $\tilde{O}(\cdot)$ notation hides $\log\log(n)$ factors. By previous results, this implies improved runtimes for linear systems in strongly connected directed graphs, PageRank matrices, and asymmetric M-matrices. When combined with slower constructions of smaller Eulerian sparsifiers based on short cycle decompositions, it also gives a solver that runs in $O(n \log^{5}n \log(n / \epsilon))$ time after $O(n^2 \log^{O(1)} n)$ pre-processing. At the core of our analyses are constructions of augmented matrices whose Schur complements encode error matrices.
翻译:我们显示,从[ Kyng- Lee- Peng- Sachdeva- Spielman STOC' 16] 直接用于定向拉placians 解决未定向的 Laplacian 线性系统, 磁盘化算法的存取, 在有 $ vertices 和 美元边缘的图形上, 需要时间 $\ mathcal{ T ⁇ rm S} (m) 到输出有 $\ mathcal{ N ⁇ rmS} (n) 边缘, 我们的算法用 $- lebrarian 系统直接解决 eularian 系统, Omm 和 $m 美元 美元 相对精度 $( mathalcal{ N ⁇ rm) 的解析算器 。