For various purposes and, in particular, in the context of data compression, a graph can be examined at three levels. Its structure can be described as the unlabeled version of the graph; then the labeling of its structure can be added; and finally, given then structure and labeling, the contents of the labels can be described. Determining the amount of information present at each level and quantifying the degree of dependence between them, requires the study of symmetry, graph automorphism, entropy, and graph compressibility. In this paper, we focus on a class of small-world graphs. These are geometric random graphs where vertices are first connected to their nearest neighbors on a circle and then pairs of non-neighbors are connected according to a distance-dependent probability distribution. We establish the degree distribution of this model, and use it to prove the model's asymmetry in an appropriate range of parameters. Then we derive the relevant entropy and structural entropy of these random graphs, in connection with graph compression.


翻译:为了各种目的,特别是在数据压缩方面,可以对图表进行三个层次的检查。其结构可以被描述为图形的无标签版本;然后可以添加其结构的标签;最后,根据随后的结构和标签,可以描述标签的内容。确定每个层次的信息数量并量化它们之间的依赖程度,需要研究对称性、图形自动形态、微调和图形压缩。在本文中,我们关注的是小世界图表的类别。这些是几何随机图,其脊椎首先与圆圈上最近的邻居相连,然后根据远视概率分布将非邻居连接成一对。我们确定该模型的度分布,并使用它来证明模型在适当范围内的不对称。然后,我们从图表压缩中得出这些随机图表的相关的方位和结构方位。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
54+阅读 · 2022年1月1日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员