The paper deals with multivariate Gaussian random fields defined over generalized product spaces that involve the hypertorus. The assumption of Gaussianity implies the finite dimensional distributions to be completely specified by the covariance functions, being in this case matrix valued mappings. We start by considering the spectral representations that in turn allow for a characterization of such covariance functions. We then provide some methods for the construction of these matrix valued mappings. Finally, we consider strategies to evade radial symmetry (called isotropy in spatial statistics) and provide representation theorems for such a more general case.
翻译:本文涉及涉及超强的通用产品空间上定义的多变量高斯随机字段。 高斯的假设意味着由共变函数完全指定的有限维分布, 即在此情况下, 以矩阵估价绘图为起点。 我们首先考虑光谱表达方式, 从而对此类共变函数进行定性 。 然后我们为构建这些矩阵估价绘图提供一些方法 。 最后, 我们考虑避免辐射对称( 空间统计中所谓的异性) 的战略, 并为这样一个更为普遍的情况提供代表理论 。