Self-supervised learning (SSL) is a technique for learning useful representations from unlabeled data. It has been applied effectively to domain adaptation (DA) on images and videos. It is still unknown if and how it can be leveraged for domain adaptation in 3D perception problems. Here we describe the first study of SSL for DA on point clouds. We introduce a new family of pretext tasks, Deformation Reconstruction, inspired by the deformations encountered in sim-to-real transformations. In addition, we propose a novel training procedure for labeled point cloud data motivated by the MixUp method called Point cloud Mixup (PCM). Evaluations on domain adaptations datasets for classification and segmentation, demonstrate a large improvement over existing and baseline methods.


翻译:自我监督学习(SSL)是一种从未贴标签的数据中学习有用表达方式的技术,已经有效地应用于图像和视频的域适应(DA),在3D感知问题中,它是否以及如何被利用来进行域适应,目前还不清楚。在这里,我们描述了用于DA的关于点云的SSL的首次研究。我们引入了一套新的借口任务,即变形重建,这是在Sim-to-Real转换中遇到的变形的启发下进行的。此外,我们提出了一个新的培训程序,用于根据称为点云混合(PCM)的MixUp方法,进行贴标签的点云数据。对用于分类和分解的域适应数据集的评估显示现有方法和基线方法的巨大改进。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
Arxiv
0+阅读 · 2021年4月29日
Arxiv
14+阅读 · 2021年3月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
Top
微信扫码咨询专知VIP会员