We introduce a unifying framework that brings two leading "locate-and-edit" model editing techniques -- ROME and MEMIT -- under a single conceptual umbrella, optimizing for the same goal, which we call the preservation-memorization objective. ROME uses an equality constraint to perform one edit at a time, whereas MEMIT employs a more flexible least-square constraint that allows for batched edits. Following the preservation-memorization objective, we present Equality-constrained Mass Model Editing algorithm for Transformers or EMMET, a new batched memory-editing algorithm that uses a closed-form solution for the equality-constrained version of the preservation-memorization objective. EMMET is a batched-version of ROME and is able to perform batched-edits up to a batch-size of 10,000 with very similar performance to MEMIT across multiple dimensions. With EMMET, we unify and achieve symmetry within the "locate-and-edit" algorithms, allowing batched-editing using both objectives.
翻译:暂无翻译