An AI-powered quality engineering platform uses artificial intelligence to boost software quality assessments through automated defect prediction and optimized performance alongside improved feature extraction. Existing models result in difficulties addressing noisy data types together with imbalances, pattern recognition complexities, ineffective feature extraction, and generalization weaknesses. To overcome those existing challenges in this research, we develop a new model Adaptive Differential Evolution based Quantum Variational Autoencoder-Transformer Model (ADE-QVAET), that combines a Quantum Variational Autoencoder-Transformer (QVAET) to obtain high-dimensional latent features and maintain sequential dependencies together with contextual relationships, resulting in superior defect prediction accuracy. Adaptive Differential Evolution (ADE) Optimization utilizes an adaptive parameter tuning method that enhances model convergence and predictive performance. ADE-QVAET integrates advanced AI techniques to create a robust solution for scalable and accurate software defect prediction that represents a top-level AI-driven technology for quality engineering applications. The proposed ADE-QVAET model attains high accuracy, precision, recall, and f1-score during the training percentage (TP) 90 of 98.08%, 92.45%, 94.67%, and 98.12%.
翻译:暂无翻译