In e-commerce search, personalized retrieval is a crucial technique for improving user shopping experience. Recent works in this domain have achieved significant improvements by the representation learning paradigm, e.g., embedding-based retrieval (EBR) and collaborative filtering (CF). EBR methods do not sufficiently exploit the useful collaborative signal and are difficult to learn the representations of long-tail item well. Graph-based CF methods improve personalization by modeling collaborative signal within the user click graph. However, existing Graph-based methods ignore user's multiple behaviours, such as click/purchase and the relevance constraint between user behaviours and items.In this paper, we propose a Graph Contrastive Learning with Multi-Objective (GCL-MO) collaborative filtering model, which solves the problems of weak relevance and incomplete personalization in e-commerce search. Specifically, GCL-MO builds a homogeneous graph of items and then optimizes a multi-objective function of personalization and relevance. Moreover, we propose a modified contrastive loss for multi-objectives graph learning, which avoids the mutual suppression among positive samples and thus improves the generalization and robustness of long-tail item representations. These learned item embeddings are then used for personalized retrieval by constructing an efficient offline-to-online inverted table. GCL-MO outperforms the online collaborative filtering baseline in both offline/online experimental metrics and shows a significant improvement in the online A/B testing of Taobao search.
翻译:暂无翻译