Photoacoustic (PA) computed tomography (PACT) reconstructs the initial pressure distribution from raw PA signals. The standard reconstruction of medical image could cause the artifacts due to interferences or ill-posed setup. Recently, deep learning has been used to reconstruct the PA image with ill-posed conditions. Most works remove the artifacts from image domain, and compensate the limited-view from dataset. In this paper, we propose a jointed feature fusion framework (JEFF-Net) based on deep learning to reconstruct the PA image using limited-view data. The cross-domain features from limited-view position-wise data and the reconstructed image are fused by a backtracked supervision. Specifically, our results could generate superior performance, whose artifacts are drastically reduced in the output compared to ground-truth (full-view reconstructed result). In this paper, a quarter position-wise data (32 channels) is fed into model, which outputs another 3-quarters-view data (96 channels). Moreover, two novel losses are designed to restrain the artifacts by sufficiently manipulating superposed data. The numerical and in-vivo results have demonstrated the superior performance of our method to reconstruct the full-view image without artifacts. Finally, quantitative evaluations show that our proposed method outperformed the ground-truth in some metrics.
翻译:光声学( PA) 计算透视( PACT) 重建原始 PA 信号的初始压力分布 。 标准的医疗图像重建可能因干扰或错误设置而导致文物的合成。 最近, 深层次的学习被用于以错误的条件重建 PA 图像 。 大多数作品都从图像域中移除文物, 并从数据集中补偿有限视图 。 在本文中, 我们提议了一个基于利用有限视图数据重建 PA 图像的深层学习的合并功能框架( JEFF- Net ) 。 从有限视图位置数据和重建图像的交叉主页特征可以通过回溯式监督结合。 具体来说, 我们的成果可以产生优异性, 其输出与地面图象( 全视图重建结果) 相比, 大大降低。 在本文中, 四分之一的定位数据( 32 频道) 被输入到模型中, 产生另外三季度视图数据( 96 频道 ) 。 此外, 有两个新损失被设计为限制手工艺品的交叉功能特征特征特征, 通过充分调控控好的超级定位数据 。 最后, 和量化的方法展示了我们 。 在地面上展示了某种图像中, 。 最后, 展示了某些 的 格式中, 的 展示了我们 的 的 的 。