Much research effort has been put to multilingual knowledge graph (KG) embedding methods to address the entity alignment task, which seeks to match entities in different languagespecific KGs that refer to the same real-world object. Such methods are often hindered by the insufficiency of seed alignment provided between KGs. Therefore, we propose an incidentally supervised model, JEANS , which jointly represents multilingual KGs and text corpora in a shared embedding scheme, and seeks to improve entity alignment with incidental supervision signals from text. JEANS first deploys an entity grounding process to combine each KG with the monolingual text corpus. Then, two learning processes are conducted: (i) an embedding learning process to encode the KG and text of each language in one embedding space, and (ii) a selflearning based alignment learning process to iteratively induce the matching of entities and that of lexemes between embeddings. Experiments on benchmark datasets show that JEANS leads to promising improvement on entity alignment with incidental supervision, and significantly outperforms state-of-the-art methods that solely rely on internal information of KGs.


翻译:在多语种知识图(KG)的嵌入方法方面已经做了大量研究,以解决实体协调任务,该方法力求将不同语言特定KG的实体与提及同一真实世界天体的实体相匹配,这些方法往往因各KG之间提供的种子协调不足而受到阻碍。因此,我们提议了一个附带监督的模式,JEANS,该模式在一个共同嵌入方案中共同代表多语言KG和文本公司,并力求改进实体与文本附带监督信号的配合。JEANS首先部署一个实体定位程序,将每个KG与单一语言文本材料结合起来。 然后,开展了两个学习程序:(一) 嵌入学习程序,将KG和每种语言的文本编码成一个嵌入空间,以及(二) 基于自学的调整学习过程,以迭接方式引导实体和嵌入者之间的词汇的匹配。对基准数据集的实验表明,JEANS导致有希望改进实体与附带监督的一致性,并大大超越完全依赖KG内部信息的状态方法。

2
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【教程】自然语言处理中的迁移学习原理,41 页PPT
专知会员服务
95+阅读 · 2020年2月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
5+阅读 · 2020年8月18日
Arxiv
5+阅读 · 2019年11月22日
Arxiv
4+阅读 · 2018年9月6日
Arxiv
7+阅读 · 2018年1月30日
Arxiv
3+阅读 · 2017年8月15日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【教程】自然语言处理中的迁移学习原理,41 页PPT
专知会员服务
95+阅读 · 2020年2月8日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
相关论文
Top
微信扫码咨询专知VIP会员