Social media is increasingly used for large-scale population predictions, such as estimating community health statistics. However, social media users are not typically a representative sample of the intended population -- a "selection bias". Within the social sciences, such a bias is typically addressed with restratification techniques, where observations are reweighted according to how under- or over-sampled their socio-demographic groups are. Yet, restratifaction is rarely evaluated for improving prediction. In this two-part study, we first evaluate standard, "out-of-the-box" restratification techniques, finding they provide no improvement and often even degraded prediction accuracies across four tasks of esimating U.S. county population health statistics from Twitter. The core reasons for degraded performance seem to be tied to their reliance on either sparse or shrunken estimates of each population's socio-demographics. In the second part of our study, we develop and evaluate Robust Poststratification, which consists of three methods to address these problems: (1) estimator redistribution to account for shrinking, as well as (2) adaptive binning and (3) informed smoothing to handle sparse socio-demographic estimates. We show that each of these methods leads to significant improvement in prediction accuracies over the standard restratification approaches. Taken together, Robust Poststratification enables state-of-the-art prediction accuracies, yielding a 53.0% increase in variance explained (R^2) in the case of surveyed life satisfaction, and a 17.8% average increase across all tasks.


翻译:社会媒体越来越多地用于大规模人口预测,例如估计社区健康统计。然而,社会媒体使用者通常不是预定人口的代表性抽样,而是“选择偏差”。在社会科学中,这种偏差通常通过再分技术来解决,根据社会人口群体如何被少少或过多地抽样,对观察结果进行重新加权。然而,很少评估消减行动来改进预测。在这个由两部分组成的研究中,我们首先评价标准,即“箱外”休息技术,发现它们没有提供改进,甚至往往退化了四个任务中的预测质量,这四个任务就是“选择美国.S.县人口健康统计”。在社会科学中,这种偏差现象通常通过再分技术来解决。在社会人口群体的社会人口群体中,观察结果似乎与它们依赖的稀少或粗略估计有关。在我们研究的第二部分中,我们制定和评估“罗布斯特post Contalization”,这包括解决这些问题的三种方法:(1) 估算性再分配,以计算收缩,以及(2) 调整性硬性硬性硬性硬性调整,以及(3) 平稳地处理低度的社会-人口统计估计。 我们在每个案例的预测中,每个分析中,每个分析中都有这些方法,可以解释。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
20+阅读 · 2019年11月23日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员