Median graphs are connected graphs in which for all three vertices there is a unique vertex that belongs to shortest paths between each pair of these three vertices. To be more formal, a graph $G$ is a median graph if, for all $\mu, u,v\in V(G)$, it holds that $|I(\mu,u)\cap I(\mu,v)\cap I(u,v)|=1$ where $I(x,y)$ denotes the set of all vertices that lie on shortest paths connecting $x$ and $y$. In this paper we are interested in a natural generalization of median graphs, called $k$-median graphs. A graph $G$ is a $k$-median graph, if there are $k$ vertices $\mu_1,\dots,\mu_k\in V(G)$ such that, for all $u,v\in V(G)$, it holds that $|I(\mu_i,u)\cap I(\mu_i,v)\cap I(u,v)|=1$, $1\leq i\leq k$. By definition, every median graph with $n$ vertices is an $n$-median graph. We provide several characterizations of $k$-median graphs that, in turn, are used to provide many novel characterizations of median graphs.
翻译:关于中位图的一般化:$k$-中位图
翻译后的摘要:
中位图是一种连通图,对于任意三个顶点,均存在一个唯一的顶点,此顶点属于这三个顶点之间的最短路径。更具体地说,如果所有 $\mu, u,v\in V(G)$,都满足 $|I(\mu,u)\cap I(\mu,v)\cap I(u,v)| = 1$,则图 $G$ 是中位图。在本文中,我们对中位图的自然推广,即称为 $k$-中位图进行了研究。如果存在 $k$ 个顶点 $\mu_1,\dots,\mu_k\in V(G)$,对于所有 $u,v\in V(G)$,满足 $|I(\mu_i,u)\cap I(\mu_i,v)\cap I(u,v)| = 1$,其中 $1 \leq i \leq k$,则图 $G$ 是 $k$-中位图。根据定义,每个点数为 $n$ 的中位图都是 $n$-中位图。我们提供了 $k$-中位图的几种特征,并进一步提供了许多中位图的新特征。