In its additive version, Bohr-Mollerup's remarkable theorem states that the unique (up to an additive constant) convex solution $f(x)$ to the equation $\Delta f(x)=\ln x$ on the open half-line $(0,\infty)$ is the log-gamma function $f(x)=\ln\Gamma(x)$, where $\Delta$ denotes the classical difference operator and $\Gamma(x)$ denotes the Euler gamma function. In a recently published open access book, the authors provided and illustrated a far-reaching generalization of Bohr-Mollerup's theorem by considering the functional equation $\Delta f(x)=g(x)$, where $g$ can be chosen in a wide and rich class of functions that have convexity or concavity properties of any order. They also showed that the solutions $f(x)$ arising from this generalization satisfy counterparts of many properties of the log-gamma function (or equivalently, the gamma function), including analogues of Bohr-Mollerup's theorem itself, Burnside's formula, Euler's infinite product, Euler's reflection formula, Gauss' limit, Gauss' multiplication formula, Gautschi's inequality, Legendre's duplication formula, Raabe's formula, Stirling's formula, Wallis's product formula, Weierstrass' infinite product, and Wendel's inequality for the gamma function. In this paper, we review the main results of this new and intriguing theory and provide an illustrative application.


翻译:Bohr- Mollerup 在其添加版中, Bohr- mollerup 的非凡理论表示, 一种独特的( 直至添加常数) convex 溶液 。 在最近出版的开放存取书中, 作者提供并展示了博尔- Mollerup 的公式具有深远影响的一般化, 考虑了功能性等式 $( 0.)\\\ ln\ gamma (x) 美元, 也就是 log- gamma 函数 $f(x) = gamma (x) 美元, 其中$( Delta) 表示经典差异运算符和 $\ gamma(x), 其中, 美元表示经典运算运算运算运算操作和调和调和性等值 。 作者们还显示, 美元( 或等值) 等值的平价计算法、 滚动的公式、 滚动的公式、 滚动的公式、 滚动的公式等式等值 、 等式的公式的公式、 等式的公式、 等式等式、 等式的公式、 等式的公式、 等式的计算、 等式、 等式的计算、 等式、 等式、 等式、 等式、 等式、 等式的计算、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式、 等式

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年9月15日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员