We present a data analytics system that ensures accurate counts can be released with differential privacy and minimal onboarding effort while showing instances that outperform other approaches that require more onboarding effort. The primary difference between our proposal and existing approaches is that it does not rely on user contribution bounds over distinct elements, i.e. $\ell_0$-sensitivity bounds, which can significantly bias counts. Contribution bounds for $\ell_0$-sensitivity have been considered as necessary to ensure differential privacy, but we show that this is actually not necessary and can lead to releasing more results that are more accurate. We require minimal hyperparameter tuning and demonstrate results on several publicly available dataset. We hope that this approach will help differential privacy scale to many different data analytics applications.
翻译:暂无翻译