Human motion prediction is an important and challenging topic that has promising prospects in efficient and safe human-robot-interaction systems. Currently, the majority of the human motion prediction algorithms are based on deterministic models, which may lead to risky decisions for robots. To solve this problem, we propose a probabilistic model for human motion prediction in this paper. The key idea of our approach is to extend the conventional deterministic motion prediction neural network to a Bayesian one. On one hand, our model could generate several future motions when given an observed motion sequence. On the other hand, by calculating the Epistemic Uncertainty and the Heteroscedastic Aleatoric Uncertainty, our model could tell the robot if the observation has been seen before and also give the optimal result among all possible predictions. We extensively validate our approach on a large scale benchmark dataset Human3.6m. The experiments show that our approach performs better than deterministic methods. We further evaluate our approach in a Human-Robot-Interaction (HRI) scenario. The experimental results show that our approach makes the interaction more efficient and safer.
翻译:人类运动预测是一个重要而富有挑战性的议题,在高效和安全的人类机器人互动系统中具有有希望的前景。目前,人类运动预测算法大多以确定模型为基础,这可能导致机器人做出危险的决定。为了解决这个问题,我们在本文件中提出了一个人类运动预测概率模型。我们的方法的关键想法是将常规确定运动预测神经网络扩大到巴耶斯人网络。一方面,我们的模型在得到观察的运动序列时,可以产生若干未来动作。另一方面,通过计算不确定和超常不确定模型,我们的模型可以告诉机器人,如果以前看到过这种观察,也可以在所有可能的预测中产生最佳结果。我们在大规模基准数据集Human3.6m上广泛验证了我们的方法。实验表明,我们的方法比确定方法要好。我们进一步评估了我们在人类-机器人互动假设中的方法。实验结果显示,我们的方法提高了互动的效率和安全性。