Dynamical models estimate and predict the temporal evolution of physical systems. State Space Models (SSMs) in particular represent the system dynamics with many desirable properties, such as being able to model uncertainty in both the model and measurements, and optimal (in the Bayesian sense) recursive formulations e.g. the Kalman Filter. However, they require significant domain knowledge to derive the parametric form and considerable hand-tuning to correctly set all the parameters. Data driven techniques e.g. Recurrent Neural Networks have emerged as compelling alternatives to SSMs with wide success across a number of challenging tasks, in part due to their ability to extract relevant features from rich inputs. They however lack interpretability and robustness to unseen conditions. In this work, we present DynaNet, a hybrid deep learning and time-varying state-space model which can be trained end-to-end. Our neural Kalman dynamical model allows us to exploit the relative merits of each approach. We demonstrate state-of-the-art estimation and prediction on a number of physically challenging tasks, including visual odometry, sensor fusion for visual-inertial navigation and pendulum control. In addition we show how DynaNet can indicate failures through investigation of properties such as the rate of innovation (Kalman Gain).


翻译:国家空间模型(SSMs)特别代表了系统动态,具有许多可取的特性,例如能够模拟模型和测量的不确定性,以及最佳(巴伊西亚意义上的)再生配方(例如卡尔曼过滤器),然而,它们需要大量的领域知识才能得出参数形式和大量的手调,以正确设定所有参数。例如,由数据驱动的技术,例如,经常神经网络已经出现,作为SMS的令人信服的替代品,在许多具有挑战性的任务中取得了广泛成功,部分原因是它们能够从丰富的投入中提取相关特征。然而,它们缺乏解释性和对不可见条件的稳健性。在这项工作中,我们介绍了DynalNet,一个混合的深层学习和时间变化状态空间模型,可以经过培训的端到端。我们的神经卡尔曼动态模型使我们能够利用每种方法的相对优点。我们展示了各种具有挑战性的任务,包括视觉测量、感应感应感应力导航和感应力网络的升级率。此外,我们还可以展示如何通过Gain-K控制来显示这种创新的失败。

2
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
172+阅读 · 2020年5月6日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
【推荐】RNN无损压缩方法DeepZip(附代码)
机器学习研究会
5+阅读 · 2018年1月1日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Arxiv
0+阅读 · 2021年10月29日
Arxiv
30+阅读 · 2021年7月7日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
172+阅读 · 2020年5月6日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
【推荐】RNN无损压缩方法DeepZip(附代码)
机器学习研究会
5+阅读 · 2018年1月1日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Top
微信扫码咨询专知VIP会员