Controlling Wheeled-legged robots is challenging especially on slippery surfaces due to their dependence on continuous ground contact. Unlike quadrupeds or bipeds, which can leverage multiple fixed contact points for recovery, wheeled-legged robots are highly susceptible to slip, where even momentary loss of traction can result in irrecoverable instability. Anticipating ground physical properties such as friction before contact would allow proactive control adjustments, reducing slip risk. In this paper, we propose a friction-aware safety locomotion framework that integrates Vision-Language Models (VLMs) with a Reinforcement Learning (RL) policy. Our method employs a Retrieval-Augmented Generation (RAG) approach to estimate the Coefficient of Friction (CoF), which is then explicitly incorporated into the RL policy. This enables the robot to adapt its speed based on predicted friction conditions before contact. The framework is validated through experiments in both simulation and on a physical customized Wheeled Inverted Pendulum (WIP). Experimental results show that our approach successfully completes trajectory tracking tasks on slippery surfaces, whereas baseline methods relying solely on proprioceptive feedback fail. These findings highlight the importance and effectiveness of explicitly predicting and utilizing ground friction information for safe locomotion. They also point to a promising research direction in exploring the use of VLMs for estimating ground conditions, which remains a significant challenge for purely vision-based methods.
翻译:暂无翻译