We present the new Orthogonal Polynomials Approximation Algorithm (OPAA), a parallelizable algorithm that solves two problems from a functional analytic approach: first, it finds a smooth functional estimate of a density function, whether it is normalized or not; second, the algorithm provides an estimate of the normalizing weight. In the context of Bayesian inference, OPAA provides an estimate of the posterior function as well as the normalizing weight, which is also known as the evidence. A core component of OPAA is a special transform of the square root of the joint distribution into a special functional space of our construct. Through this transform, the evidence is equated with the $L^2$ norm of the transformed function, squared. Hence, the evidence can be estimated by the sum of squares of the transform coefficients. The computations can be parallelized and completed in one pass. To compute the transform coefficients, OPAA proposes a new computational scheme leveraging Gauss--Hermite quadrature in higher dimensions. Not only does it avoid the potential high variance problem associated with random sampling methods, it also enables one to speed up the computation by parallelization, and significantly reduces the complexity by a vector decomposition.
翻译:暂无翻译