The class of Gibbs point processes (GPP) is a large class of spatial point processes able to model both clustered and repulsive point patterns. They are specified by their conditional intensity, which for a point pattern $\mathbf{x}$ and a location $u$, is roughly speaking the probability that an event occurs in an infinitesimal ball around $u$ given the rest of the configuration is $\mathbf{x}$. The most simple and natural class of models is the class of pairwise interaction point processes where the conditional intensity depends on the number of points and pairwise distances between them. This paper is concerned with the problem of estimating the pairwise interaction function non parametrically. We propose to estimate it using an orthogonal series expansion of its logarithm. Such an approach has numerous advantages compared to existing ones. The estimation procedure is simple, fast and completely data-driven. We provide asymptotic properties such as consistency and asymptotic normality and show the efficiency of the procedure through simulation experiments and illustrate it with several datasets.
翻译:Gibbs点进程( GPP) 是一个巨大的空间点进程类别, 能够同时模拟组合点和反差点模式。 它们由条件强度来指定, 对于一个点模式 $\ mathbf{x} 美元和一个位置 $u$ 来说, 条件强度是 $\ mathbf{x} 和 $u$, 粗略地说, 一个事件发生于一个极小的圆球 $u美元左右的概率, 因为配置的其余部分是 $\ mathbf{x} 美元 。 最简单和自然的模型类别是 双向互动点进程类别, 其条件强度取决于点数和对对等距离 。 本文涉及对对对等互动函数的估算问题。 我们提议使用其对数序列的对数扩展来估计它。 这样一种方法比现有方法有许多优点。 估计程序简单、 快速和完全由数据驱动。 我们提供类似一致性和微调的正常性特性, 通过模拟实验来显示程序的效率, 并以数个数据集来说明它 。