Instance segmentation on point clouds is crucially important for 3D scene understanding. Distance clustering is commonly used in state-of-the-art methods (SOTAs), which is typically effective but does not perform well in segmenting adjacent objects with the same semantic label (especially when they share neighboring points). Due to the uneven distribution of offset points, these existing methods can hardly cluster all instance points. To this end, we design a novel divide and conquer strategy and propose an end-to-end network named PBNet that binarizes each point and clusters them separately to segment instances. PBNet divides offset instance points into two categories: high and low density points (HPs vs.LPs), which are then conquered separately. Adjacent objects can be clearly separated by removing LPs, and then be completed and refined by assigning LPs via a neighbor voting method. To further reduce clustering errors, we develop an iterative merging algorithm based on mean size to aggregate fragment instances. Experiments on ScanNetV2 and S3DIS datasets indicate the superiority of our model. In particular, PBNet achieves so far the best AP50 and AP25 on the ScanNetV2 official benchmark challenge (Validation Set) while demonstrating high efficiency.
翻译:对于 3D 场景理解而言, 点云的测距分化至关重要 。 远程集成通常用于最先进的方法( SOTAs) 。 远程集成通常有效,但在用同一语义标签分割相邻物体方面效果不佳( 特别是当它们合用相邻点时 ) 。 由于抵消点分布不均, 这些现有方法几乎不可能将所有实例点集中在一起。 为此, 我们设计了一个新的分化和征服策略, 并提议一个名为 PBNet 的端到端网络, 将每个点双向端, 将每个点分解成分集到区段实例中。 PBNet 差异抵消实例点分为两类: 高低密度点( HPPs vs.LPs), 这些点被分别征服。 相近对象可以通过删除 LPs 来明确分隔, 然后通过邻居投票方法分配 LPs 来完成和完善。 为了进一步减少组合误差, 我们开发了一个基于平均大小的迭合算法。 ScanNet2 和 S3DIS 数据集表示模型的优越性。 具体而言, PBNet 将达到最高挑战, 。