Deep learning combined with high-resolution tactile sensing could lead to highly capable dexterous robots. However, progress is slow because of the specialist equipment and expertise. The DIGIT tactile sensor offers low-cost entry to high-resolution touch using GelSight-type sensors. Here we customize the DIGIT to have a 3D-printed sensing surface based on the TacTip family of soft biomimetic optical tactile sensors. The DIGIT-TacTip (DigiTac) enables direct comparison between these distinct tactile sensor types. For this comparison, we introduce a tactile robot system comprising a desktop arm, mounts and 3D-printed test objects. We use tactile servo control with a PoseNet deep learning model to compare the DIGIT, DigiTac and TacTip for edge- and surface-following over 3D-shapes. All three sensors performed similarly at pose prediction, but their constructions led to differing performances at servo control, offering guidance for researchers selecting or innovating tactile sensors. All hardware and software for reproducing this study will be openly released.
翻译:与高分辨率触摸感应器一起进行深层学习,可能会导致高分辨率的超光度机器人。 但是,由于专业设备和专业知识,进展十分缓慢。 DIGIT 触摸传感器使用 GelSight 式传感器提供高分辨率触碰的低成本条目。 我们在此定制DIGIT, 以基于软生物模拟光学触摸传感器TacTip 的软生物模拟光学触控器的TacTip 系统为基础, 3D 色谱传感器的3D 打印遥感表面。 DIGIT- TacTip (DigiTac) 能够直接比较这些不同的触摸感应传感器类型。 为了进行比较, 我们引入了由桌面臂、 挂载和 3D 打印的测试对象组成的触摸机器人系统。 我们使用 PoseNet 深度学习模型来比较DIGIT 、 DigiTac 和 TacTip 3D 色谱的边缘和表面跟踪。 所有3D-shapes 的感应器都以类似的方式进行预测, 但是它们的构造导致在Servo 控制上的不同性操作, 性操作将产生不同的性功能,, 。为研究人员将使用该软件和释放传感器。