We propose a deep visuo-tactile model for realtime estimation of the liquid inside a deformable container in a proprioceptive way.We fuse two sensory modalities, i.e., the raw visual inputs from the RGB camera and the tactile cues from our specific tactile sensor without any extra sensor calibrations.The robotic system is well controlled and adjusted based on the estimation model in real time. The main contributions and novelties of our work are listed as follows: 1) Explore a proprioceptive way for liquid volume estimation by developing an end-to-end predictive model with multi-modal convolutional networks, which achieve a high precision with an error of around 2 ml in the experimental validation. 2) Propose a multi-task learning architecture which comprehensively considers the losses from both classification and regression tasks, and comparatively evaluate the performance of each variant on the collected data and actual robotic platform. 3) Utilize the proprioceptive robotic system to accurately serve and control the requested volume of liquid, which is continuously flowing into a deformable container in real time. 4) Adaptively adjust the grasping plan to achieve more stable grasping and manipulation according to the real-time liquid volume prediction.
翻译:我们提出一个深度相对触动模型,用于以自行感知的方式对一个变形容器内的液体进行实时估计。我们用两种感官模式,即RGB相机的原始视觉输入和我们特定的触动传感器的触动信号,而没有额外的传感器校准。 机器人系统根据实时估计模型很好地控制和调整。 我们工作的主要贡献和新颖之处如下:(1) 探索液体积估计的自动方法,开发一个由多式演动网络组成的端到端预测模型,在试验验证过程中,在大约2毫升的误差下实现高精确度。 (2) 提出一个多任务学习结构,全面考虑分类和回归任务的损失,比较评估所收集的数据和实际机器人平台上每种变异的性能。 (3) 利用热感性机器人系统,以准确服务和控制所请求的液体体积,这种液体在实时持续流入一个可变形容器。 (4) 调整性地调整掌握计划,以便实现更稳定地掌握和操纵到真实的液体量的预测。