We study the variable selection problem in survival analysis to identify the most important factors affecting the survival time when the variables have prior knowledge that they have a mutual correlation through a graph structure. We consider the Cox proportional hazard model with a graph-based regularizer for variable selection. A computationally efficient algorithm is developed to solve the graph regularized maximum likelihood problem by connecting to group lasso. We provide theoretical guarantees about the recovery error and asymptotic distribution of the proposed estimators. The good performance and benefit of the proposed approach compared with existing methods are demonstrated in both synthetic and real data examples.


翻译:我们研究生存分析中的变量选择问题,以确定影响生存时间的最重要因素,当变量事先知道它们通过图形结构具有相互关系时,这些变量会影响生存时间。我们考虑Cox比例风险模型,该模型带有基于图表的变量选择常规化器。我们开发了一种计算高效的算法,通过连接群列,解决图形标准化的最大可能性问题。我们从理论上保证了拟议测算器的回收错误和无药可治分布。与现有方法相比,拟议方法的良好性能和效益在合成和真实数据实例中都得到了证明。

0
下载
关闭预览

相关内容

专知会员服务
12+阅读 · 2021年10月12日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
别说还不懂依存句法分析
人工智能头条
23+阅读 · 2019年4月8日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年10月18日
VIP会员
相关VIP内容
专知会员服务
12+阅读 · 2021年10月12日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
别说还不懂依存句法分析
人工智能头条
23+阅读 · 2019年4月8日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员