We present a general approach for controlling robotic systems that make and break contact with their environments. Contact-implicit model-predictive control (CI-MPC) generalizes linear MPC to contact-rich settings by relying on linear complementarity problems (LCP) computed using strategic Taylor approximations about a reference trajectory and retaining non-smooth impact and friction dynamics, allowing the policy to not only reason about contact forces and timing, but also generate entirely new contact mode sequences online. To achieve reliable and fast numerical convergence, we devise a structure-exploiting, path-following solver for the LCP contact dynamics and a custom trajectory optimizer for trajectory-tracking MPC problems. We demonstrate CI-MPC at real-time rates in simulation, and show that it is robust to model mismatch and can respond to disturbances by discovering and exploiting new contact modes across a variety of robotic systems, including a pushbot, hopper, and planar quadruped and biped.
翻译:我们提出了一个控制机器人系统的一般方法,这些机器人系统与环境发生接触和中断接触。接触隐蔽的模型预测控制(CI-MPC)将线性多功能电动控制器一般化为接触丰富的环境,方法是依靠对参考轨迹的战略泰勒近似值计算线性互补问题(LCP),并保留非脉冲影响和摩擦动态,使该政策不仅能够考虑到接触力和时间,而且能够在网上产生全新的接触模式序列。为了实现可靠和快速的数字趋同,我们为LCP接触动态设计了一个结构开发、跟踪路径的求解器,并为轨迹跟踪MPC问题设计了一个定制的轨迹优化器。我们在模拟中以实时速度展示 CIC-MPC,显示它对于模型不匹配是强大的,并且能够通过发现和利用各种机器人系统的新接触模式来应对干扰,包括推式机器人系统、推式机系统、推动式系统、平式系统、平式系统四重和双型系统。